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PROGRESS IN FAVRE-REYNOLDS STRESS CLOSURES FOR COMPRESSIBLE FLOWS

V. ADUMITROAIE*, J.R. RISTORCELLI t, AND D.B. TAULBEE$

Abstract. A closure for the compressible portion of the pressure-strain covariance is developed. It

is shown that, within the context of a pressure-strain closure assumption linear in the Reynolds stresses,

an expression for the pressure-dilatation can be used to construct a representation for the pressure-strain.

Additional closures for the unclosed terms in the Favrd-Reynolds stress equations involving the mean ac-

celeration are also constructed. The closures accommodate compressibility corrections depending on the

magnitude of the turbulent Mach number, the mean density gradient, the mean pressure gradient, the mean

dilatation, and, of course, the mean velocity gradients. The effects of the compressibility corrections are

consistent with current DNS results. Using the compressible pressure-strain and mean acceleration closures

in the Favr_-Reynolds stress equations an algebraic closure for the Favr_-Reynolds stresses is constructed.

Noteworthy is the fact that, in the absence of mean velocity gradients, the mean density gradient produces

Favr_-Reynolds stresses in accelerating mean flows. Computations of the mixing layer using the compress-

ible closures developed are described. Full Reynolds stress closure and two-equation algebraic models are

compared to laboratory data. The mixing layer configuration computations are compared to laboratory

data; since the laboratory data for the turbulence stresses is inconsistent, this comparison is inconclusive.

Comparisons for the spread rate reduction indicate a sizable decrease in the mixing layer growth rate.

Keywords: compressible turbulence, compressible pressure-strain, algebraic Reynolds stress models

Subject classification: Fluid Mechanics

1. Introduction. There has been a resurgence of interest in effects of compressibility on turbulent

flows related to the design of high-speed/high-altitude engines. Although experimental and numerical infor-

mation is growing (for reviews see [1, 2, 3]) rational theoretical and modeling efforts are in a preliminary

stage of development. This is consistent with the fact that what is understood of the relative importance of

many of the different physical effects of compressibility is very much in flux -- changing as more numerical

simulation information becomes available. While several issues regarding the effects of the compressibility of

the turbulent fluctuations have been recognized, progress in incorporating the physics responsible for these

new compressibility effects in single-point turbulence closures has been slow. One of the major impediments

to progress has been the absence of a procedure that would allow for the inclusion of the effects of com-

pressibility on the pressure-strain covariance appearing in the second-order moment equations. A method of

including compressibility effects as they appear in the pressure-strain covariance and also the variable inertia

effects are the subject of the present study.

*Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY 14260-4400.

Present affiliation: CFD Research Corporation, 215 Wynn Drive, Huntsville, AL 35805.

tA portion of this research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-19480 while the second author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

SDepartment of Mechanical and Aerospace Engineering State University of New York at Buffalo, Buffalo,NY 14260-4400.



Several earlier studies have obtained closures for diverse effects of compressibility. Researchers have, in

general, exploited a decomposition of the compressible field into solenoidal and dilatational parts. This has

been done using a dimensional analysis in physical space [4] or in Fourier space [5], asymptotic analysis [6],

rapid-distortion theory [7], and a singular perturbation method [8]. All these approaches have generated

models for new compressible scalar terms, the pressure-dilatation and the dilatational dissipation, that

appear in the kinetic energy equation for high-speed flows. Such an approach to compressible turbulence

modeling has been called, very sensibly, an "energetic" approach to the effects of compressibility, Simone

et al. [9]. The models resulting from the "energetic" approach to compressibility have been applied as

compressibility corrections to the standard k - _ model, [i0], and their generalizations, [5], or to standard

incompressible second-order moment [Reynolds stress] closures [II, 12, 13]. Such a procedure is, of course,

an implicit statement that compressible effects do not manifest themselves in either the pressure-strain or

in the dissipation of enstrophy; the effects of compressibility occur only in those terms explicitly linked to

the new terms involving the dilatational field. Thus, energetic approaches to the problem of compressible

turbulence, as pointed out in [9], are incomplete.

At one time, the pressure-dilatation and the compressible dissipation, on which modeling effort has been

expended, were believed to be the primary physical effects contributing to the reduced growth rate of the

compressible mixing layer. Recent studies [14, 15] have demonstrated that the dilatational effects on the

mixing layer are, in fact, much smaller than once believed. In addition, more recent direct numerical

simulations (DNS) suggest that the pressure-dilatation covariance is nominally more important than the

compressible dissipation, contrary to early proposals, [4, 6]. The pressure-dilatation does not, however,

account for the reduced growth of the mixing layer. It appears, as suggested in [16], that the phenomena

responsible for the reduced growth rate of the turbulent shear flows is due to the reduction in the Reynolds

shear stress anisotropy; this effect is thought to be due to the effects of compressibility on the pressure-strain

covariance. This viewpoint is consistent with the earlier numerical studies of [17]. The articles [13] and the

later [18] studied Reynolds stress closures in the context of the DNS of the homogeneous shear. The study

showed that the inclusion of the [then] current compressible dissipation and pressure-dilatation models in the

Reynolds stress turbulence closures led to improved predictions for the turbulent kinetic energy. However,

there were no changes in the anisotropy consistent with that seen in DNS. The authors concluded that

the [then] current models were deficient primarily in the modeling of the pressure-strain covariance which

controls the level of Reynolds stress anisotropy.

It should be noted that the improved agreement for the time evolution of the kinetic energy, [13, 18], when

using the compressible models of that time cannot be taken to indicate that such flows were rationally

predicted. The models current at that time, designed with erroneous assumptions regarding the importance

of the dilatational effects, were providing the right amount of dissipation but by mechanisms that did not

reflect actual flow physics. This has since been substantiated numerically in the studies [9, 14, 15, 16]; all of

which indicate the lack of significance of both the pressure-dilatation and the compressible dissipation. The

fact that the compressible dissipation and the pressure-dilatation are nominal effects is also consistent with

the analytical development of [8]. In [8] the pressure-dilatation is shown to vanish as turbulence approaches

equilibrium; the simulations mentioned are quasi-equilibrium flows. It should be mentioned that in the

homogeneous shear simulations, arguably the most non-equilibrium of the benchmark flows, the pressure-

dilatation is small but non-negligible; it is some 5-10% of the dissipation. Our position is the same as

the position of Vreman et al. [14] as pithily summarized in their conclusion; to paraphrase, turbulence



models constructed using the dilatational dissipation or pressure-dilatation to explain the suppression of the

turbulence [in the mixing layer] do not appear to be reflecting the correct physics.

Thus, if it is assumed that the primary source of the reduced mixing rate in the mixing layer is due to the

reduction in the shear stress anisotropy as indicated by DNS then a closure of the second-moment or Reynolds

stress equations is required: the pressure-strain covariance appearing in the second-moment equations is the

only possible mechanism for such behavior. This is a substantially more difficult problem than that treated

using the energetic approach; the quantities requiring closure are no longer scalars but second-order tensors.

As one might expect, true compressible second-order modeling attempts are few, [7, 19].

This article describes the development of a closure for the compressible aspects of pressure-strain covariance

appearing in the Favr_-Reynolds stress equations. [As is clear from the material, the phrase Reynolds

stresses will be used to refer to the Favr_-Reynolds stresses.] Closures for the unclosed terms involving the

mean acceleration are also constructed. In as much as most engineering calculations [in this country] are

done with lower order closures this article therefore also includes the additional development of the second-

order moment closure into an algebraic Reynolds stress closure, suitable for flows in structural equilibrium,

following established procedures [20, 21, 22, 23, 24, 25, 26, 27, 28].

The algebraic Reynolds stress expression is noteworthy for the fact that it indicates that, even in the absence

of mean deformation, the mean density gradient is a source of turbulence stresses in accelerating mean flows.

As a consequence, for flows with large arbitrary mean density and pressure gradients an eddy viscosity

representation for the Reynolds stresses is, from first principles, inappropriate. Qualifications regarding this

statement are further discussed in §4.

In the next section, §2, the Favr5 averaged nondimensional form of the governing equations are given. Both

first and second-order moment equations for a compressible medium, with no combustion, are given. Issues

related to moment closures for compressible turbulence are also outlined.

The development of closures for the effects of compressibility in the Reynolds stress equations is described

in §3. It is shown that, within the context of a pressure-strain closure linear in the Reynolds stresses, an

expression for the pressure-dilatation covariance can be used to construct the off-diagonal components of

the pressure-strain covariance. In this way the results of previous so-called energetic approaches, [9], to the

effects of compressibility can be built into the deviatoric portion of an expression for the pressure-strain.

It is hoped that such a procedure would allow one to avoid the development of a whole new theory and

methodology for a compressible pressure-strain closure.

Closures for the effects of the mean acceleration, which involve the mass flux, are also developed. The new

closures account for the influence of the turbulent Mach number, and the mean density and pressure gradients

through a new quantity, the baroclinic dyad. The effects of the bulk dilatation are also included. Section

3 is concluded with a summary of models for the compressible dissipation; given the acknowledged lack

of importance of the compressible dissipation in weakly compressible aerodynamic turbulence, as discussed

above and in §3, no development of models for the compressible dissipation is pursued.

Starting with the closure for the second-order moment equations developed in §3, §4 develops an algebraic clo-

sure for the Reynolds stresses. The physics of compressibility as captured by the full second-moment closure

are therefore built into the simpler and more widely used two-equation k - _ platform. The tensor polyno-

mial representation techniques employed produce both two-dimensional and three-dimensional versions of an



algebraicturbulencestressclosure.Giventhecomplexityofthethree-dimensionalalgebraicclosureandthe
currentstatusof single-pointturbulencemodelsforthree-dimensionalflowonlythetwo-dimensionalmodel
is developedintoaworkingclosure.

Section5focusesona numericalinvestigationoftheclosures.Thenumericalmethodusedto simulatethe
free-shearflowsof interestissketched.Thetheoryandresultspresentedin earliersectionsareimplemented
in simulationsin themixinglayer.

Simulationsusingsecond-ordermoment(SOM)closuresaswellasthealgebraicmodelsareconducted.The
numericalexperimentsareconstructedwith the intentionof investigatingseveralverydifferentissuesof
relevancetothepredictionofcompressibleturbulentflowsforengineeringpurposes.Foremostin importance
is theabilityofanalgebraicstressmodel- thatincludestheeffectsofcompressibility- to reflectthephysics
in thefullSOMclosures.

Thepressure-strainmethodologydevelopedfortheSOMequationsin§3aregeneralanddependonachoiceof
closuresfor thepressure-dilatation.Asconsequenceit followsthatit is necessaryto understandsensitivity
of theformulationto differentmodelsfor the pressure-dilatation.In this contexttwopressure-dilatation
modelsareinvestigated.

In additionto assessingthesensitivityofthepressure-strainmodelto differentpressure-dilatationmodels
andthesuitabilityof the algebraicstressclosure,wecomparethe computationalresultsto what is seen
in numericalandlaboratoryexperiments.Ofparticularinterestis thewellknowneffectof compressibility
on reductionof the spreadrateof the mixinglayer. In asmuchasthereductionin thespreadrate is
dueto changesin the theanisotropyof theReynoldsstresses,asa functionof compressibility,arealso
investigated.Giventhat theanisotropyof theReynoldsstressesis dependenton thepressure-strain,the
effectsofcompressibilityonthedifferentcomponentsofthepressure-strainarealsoinvestigated.

2. Governingequations.Theproblemformulationis nowdescribed.Thisincludesa statementof
thegoverningequations thefirst andsecond-momentequations.Indicationsofthemodelingissuesto be
addressedinsubsequentsectionsarealsogiven.TheFavr5averagingprocedureisfirst described.

The conservationequationsfor mass,momentumandenergyin a Favr6settingarenowderived.The
dependentvariablesusedarethe densityp, the velocity ui and the total energy et = h - pip + uiu_/2.

The fluid is assumed to be Newtonian fluid satisfying the Stokes relation with zero bulk viscosity and a

constant molecular Prandtl number. Although real gas effects are of interest for industrial applications

there are a sufficient number of unresolved and more important issues associated with compressibility that

justify limiting the study to ideal gases. Consequently, the pressure p is obtained from the equation of state

p -- pRT.

The Favr6 averaging procedure is now described: denote by an over-bar the ensemble (or time) average and

by the brackets the density weighted ensemble (or time) average:

pX
(1) (X) = _

P

The ensemble average obeys the following decomposition rules:

(2) X = X + x', x---v= 0.



TheFavr_averageobeysthefollowingdecompositionrules:

(3) X=(X)+X", (X")=0, X"=X-(X).

The application of the above averaging procedure on the instantaneous transport equations, decomposing the

variables Favr_ mean and fluctuating components, produces the Favr6 averaged equations. The equations of

motion are first rewritten in nondimensional form (with respect to reference values taken in the high speed

stream: p_, uc_, Too, tt_ and the inlet value of the vortieity thickness 5_). Using these reference quantities,

we define the relevant nondimensional parameters: the Reynolds number Re = p_uc_5_/#c_, the Prandtl

number Pr = Cp#_/)_, the mean flow Mach number M ----uo_/_, _/is cp/cv. For this study, Pr = i.

2.1. First moment equations. The mass conservation equation reads:

oF °P(us) - o
(4) + oxj

and the conservation of momentum is:

Note that the stress tensor notation is changed to _rji (u) = _ [Sij (u) - ½Spp (u)5_j] ---=2#S_ (u)/Re. For the

strain rate Sij (u) = _1( _°_ + o_0_) and for all the other linear differential operators, this new notation is more

suitable when investigating compressible flows. In these instances the two types of averages, having different

properties with respect to the linear differential operators, are naturally encountered. Hereafter any tensor

with a star superscript will indicate the deviator - the traceless portion of that tensor.

Two supplementary hypotheses pertaining to the molecular transport of momentum are set forth: the

viscosity fluctuations are unimportant and the mean viscosity (#) is described by the Maxwell-Rayleigh law,

i.e., it varies with the mean temperature as (#)/#rey -- ((T)/Tref) m, m = 0.76. The fluctuations of the

viscosity and their correlation with other variables are neglected. Within the current notation the averaged

stress -_ji(u) is equal to _fi((u)) + aji(u").

The Favr6 mean of the total energy of the fluid et = T/['y('y - 1)M 2] + ujuj/2 obeys:

(6) O_(et) + O_(et}(uj} _ Oqj(T) O-f(u_e_')
Ot Oxj Oxj Oxj + -

As is the situation with the momentum equation, the molecular flux term in the energy equation introduces

the other type of mean quantity present in the Favr_ formulation - the plain ensemble mean. Using the new

notation, the heat flux

# OT

qj(T) = 1)ReP M2

has the resulting averaged expression:

q

_j(T) = qj( (T} ) + qj(T").

The remaining terms on the right-hand side of the energy equation can be expanded by using the equation

of state in the average sense

1
(7) _ = --:_._(T).

,ylvl * -



Thenthepressureworktermisoftheform

= _(uj) + -_-fi(u_T"),pu--j

the viscous work term reads

ui_5_(_)= (u_)_j_((_))+ (_)_j_(_'_) + _'-_5_((_))+ _"_j_(u")

and the turbulent total energy flux is

_ ,, ,, 1 " " -- -'u"u""u" + fi (u;u_'u_')
p(ujet) -- _/(,,/_ 1)M2_(ujT }-v p( j i)( i) 2 "

The fluctuations of transported quantities in turbulent flows are sustained via interaction between the mean

gradients and the turbulence. The fluctuations will be characterized by length and time scales of the order of

those of the mean flow and which, provided the Reynolds number is large, will be many orders of magnitude

larger than the fine scales at which the molecular diffusion is important. Thus the form of the moment

equations carried in the closure development for the computation of free shear flows will not include viscous

transport effects.

2.2. Second-order moment equations. The average of the first moment of the Favr_ decomposed

Navier-Stokes equations produces the following second moment equations:

-- II It O_IuIlu I1\ /U \

OP(UiUj) H_ i j/\ k/ __ 0 [_ ,, ,, ,,Ot _- OXk OX k -P(UiUjUk)-_-_tUll6P j ik-_-F_tUttbijk-- UtlO-ikj
(_")-

+_oo-k,((_))_:+ _°°kJ((_)) - oo" 0_':1(s) __ ,_(_,,)___ + ,_k,(_"):_z-/
Oxk i Oxk oxk oxk j

It is necessary to provide a closure for two compressible quantities: the pressure-strain correlation and the

mass flux/pressure gradient (the last three terms in the second line). The molecular diffusion terms are

generally small in high Reynolds number flows and will be negligible for problems addressed here. It should

be pointed out that, depending on how the derivation is done, the mass flux terms multiply the acceleration

of the mean flow. For this reason the mass flux terms are often called acceleration terms: they appear to be

important in accelerating mean flows.

Various tensors are divided into their traces and their deviators. The production of the Reynolds stresses

becomes,

. 2p r ,, ,, O(uj) ,, ,, O(ui) 2/u,,u,,xO(Uz)6_. 1
(9) P;j=Pij-_ 6ij=--PL(uiuk)-_xk +(uku j) _ -3\ k Zz--_Xk 3J

where P is the production of (k). The pressure-strain covariance is written as

. 2 2p,(10)
Hij = HiY - 3-ff-dbiJ = P' \ oxy + Ox_ ] - 3 0Xk "

The viscous and pressure acceleration terms are written, respectively, as

(11) )2_ .= _2ii - -_)2 i_ = j Oxkk _ cOxk - 3 _ COxk _
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and

Note that the mean pressure gradient appearing in Mij and the mean viscous stress appearing in ]2ij can be

replaced using the mean momentum equations. In which case they are written in terms of the mean flow

Lagrangian acceleration. Both of these terms involve the mass flux; any closure for these two acceleration

terms requires a closure for the mass flux. The dissipation is rewritten as

(13) P ei*j = P _ij - -_Sij = o'jk(u")Oxk + o,i(u")__ --
f

oxk g Ikk'. ) Ox-----£oq

In turbulent free shear flows the viscous diffusion part is overlooked owing to high Reynolds numbers which

are characteristic to these flows. The present analysis can accommodate the discarded viscous terms when

necessary; the tensor )2ij will be carried for generality. Furthermore, the turbulent transport terms are

considered together:

[- " " " +_'u"5 +_'u"5 u"a 'u"' ](14) Tijk=-- p(uiujuk) _, jik t" i jk-- i kit )--uj'aki(U") •

The Reynolds stress or second-order moment equations are then written

(15)

-- II II- " "  j)(uk) oOp(u_ u5 ) +
Ot Oxk OXk

2
+g [P + -¢d+ M + v -

The equation for the anisotropy. The single point anisotropy tensor, a, is defined

. . 2 6
(16) aij = (u i uj }/(k) - _ ij.

The anisotropy has zero trace. Note that the Reynolds stress has been normalized by (k) and not 2(k);

in which case this version of the anisotropy is related to an older definition by aij = 2bij. The turbulence

time scale is T = (k)/_ where _s is the solenoidal dissipation. The second invariants of the mean strain and

rotation are denoted by 0 -2 = _j ((it)) S;i ((u)) and (M2 = _ij ((u))_'_ij ((u)).

For subsequent manipulations used to derive an algebraic stress closure in §4 we replace the second-order

transport equations with an equation for (k) and the anisotropy tensor. The following form of the transport

equation for the anisotropy tensor, [21], will be used:

(17) _aiJT [C_2 -

1 [ OTijk (u_'uy) OTk ] aij [ OTk OT[_]

1 . .

+_-_ [P_ + H,j + Adij + 1);; - -fi Q'j] -

2+(2-co )
P Cs

where D/Dt indicates the mean Lagrangian derivative, D/Dt = o + (uj)_.
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The kinetic energy equation. The equation for the turbulent kinetic energy (k) " "= (u s u i )/2 is

_ 0(ud0_(k) + 0_(k)(_j) 0 , ,, ,, ,,

o_" o p _,o_5_((_)) _ .,,,_o_7
(18) + p':-_c_- - U]oxiOxj + j _ _"'_ ]_xj"

The additional terms reflecting the compressible nature of the turbulence are on the last line; they are,

respectively, the pressure-dilatation covariance, the mass flux mean acceleration, and the compressible

dissipation. Note that neither the pressure-strain nor the mass flux/pressure acceleration terms, Adij, appear

in the (k) equation. The effects of the pressure-strain and the 2t4ij, appears only in the Reynolds stress

equations. Any classical two-equation turbulence model cannot, as a consequence, account for the physics

associated with these two unknown covariances that lead to changes in the Reynolds stress structure. Early

approaches accounting for the effects of compressibility have focussed only on the effects of compressibility

as they occur in the energy equation. This so-called "energetic" approach, to use the phrase of Simone et al.

[9], for the effects of compressibility misses the changes in the Reynolds stresses due to compressibility and

inertia. It is for this reason that, in §3, the second-order equations are closed. An algebraic Reynolds stress

closure is then derived in §4. In this way the structural effects of compressibility, for a certain class of flows,

can be accounted for in the context of a two-equation single-point closure.

The dissipation equation. The dissipation appearing in the kinetic energy equation is typically written,

for locally homogeneous flows,

OuT
(19) _J'(_")b-_j = _ _ = ?(_ + _) = 2,a_j(u,,)a,j(u,,) + -,s_(u,,)3

1_( Oul Ou_[4, 6, 29], with f_j(u) = 2 0_j o_, ) as the rotation rate. It is customary to compute the solenoidal

dissipation from the incompressible k - e model extended to variable density flows:

(20) 0__ 0__(w) 0 [_ 0_] - 0(_d -_0----_---t- -- -- --t_elp_(uiuj_ -- - e--sOxj Oxj (u_c2 _ ._ _ c_ . ,, ,,,ReOx_J _ C_P (k)'

where C_ = 1.44 and C_ 2 = 1.92.

3. Compressible closures for the second-order moment equations. This section describes the

development of closures for the unknown terms in the second-order equations. The pressure-strain covari-

ance appearing in the Reynolds stress equations is closed using a linear tensor polynomial representation

in the Reynolds stress following well established procedures similar to Launder et al. [30]. In recogni-

tion of the minor role viscosity plays in high Reynolds number free shear flows, only pressure-strain and

pressure-acceleration closures are addressed. The pressure-acceleration terms are closed using a leading or-

der [isotropic] gradient transport expression for the mass flux. The following section, §4, uses the results of

the present section to obtain an algebraic closure for the Reynolds stresses.

3.1. A closure for the pressure-strain covariance. In incompressible turbulence the closure of the

pressure-strain covariance by a tensor polynomial linear in the Reynolds stresses is used with notable success

for simple two-dimensional mean flows. The procedure is standard; a popular early reference is Launder

et a/.[30]. An updated version of the linear [30] rapid pressure-strain modeling is given in Speziale et al.

[31]. As the ultimate goal is to devise an algebraic Reynolds stress model only pressure-strain models linear
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in the Reynolds stresses will be considered. A discussion of nonlinear rapid-pressure-strain model and the

need for realizability can be found in [32]. Additional discussion of the physical assumptions underlying such

methodologies can be found in [33], [34] and [35].

The compressible correction to the pressure-strain covariance representation is obtained using established

linear procedures. As in the incompressible situation, [30, 34, 32], the pressure strain-covariance closure can

be written as:

(21)

Such an expression is possible if the supplementary compressible terms appearing in the Poisson equation

for the pressure (see Appendix) are, in the weakly compressible limit, of higher order. This will be the case

if the evanescent wave portion of the initial value problem is not important as is the case for aerodynamic

applications, [36]. The tensors in the above decomposition are modeled as:

(22)

(23)

•Aij = -C1_ _aiy + .App

_'pjqi __ (21_qi_p j j_ (22(_pq_ij __ _qj_pi) _- _l_pjaqi

<k>
_- fl2(6pqaij J- (_piaqj _- _ijapq _- 5jqapi) J- fl3(_qiapj

Here _piqi, following precedent, is linear in the Reynolds stresses satisfying necessary symmetry requirements.

There are five unknowns. To determine the coefficients in 5[pjqi additional constraints are required. As is

the usual procedure, the normalization constraint, [30, 32], requires

(24) Ippqi ---- [(3(21 + 2(22)6qi + (3fll + 4D2)aqi](k> = (uqui)""

which can be satisfied if

There are now three unknowns and additional information is required to obtain them.

In incompressible turbulence modeling the trace of the pressure-strain is zero, Ipkqk ---- 0, and this provides

the additional information to determine the unknowns. In compressible turbulence the trace of the pressure-

strain is the pressure-dilatation and the so-called continuity constraint becomes

(25) Akk + 4_ Zpkqk [Spq + _pq] = 2p'd.

As the right hand side, pd, is known from earlier energetic approaches to the compressible turbulence model-

ing problem, the continuity constraint, equation (25), becomes a constraint that determines the coefficients

in the pressure-strain closure. Note that as pd vanishes with turbulent Mach number the incompressible

limit, _4kk + 4_ T.pkqk [Spq + _pq] ---- 0, is recovered for vanishing compressibility.

As a consequence of the continuity constraint a certain combination of coefficients appears in the final model.

These are readily defined by a portion of (25) such that

(26) _.piqi/(k> : ((21 J- 4(22)(_pq -J- (_1 -}- 5/_2 _- _3)apq --- d16pq + d2apq.



The final model for the compressible portions of the pressure-strain is then written in terms of dl and

d2. The values of dl and d2, as will be indicated shortly, are then determined by the expression for the

pressure-dilatation. The values of the a_ can be related to the di:

al = -dl/5 +4/15, a2 = 3dl/10- 1/15

/_1 = (15 + 6C2)/33, _2 = -(2 q- 3C2)/22

_3 = d2 + C2/2.

and C 3 : (5 -- 9C2)/11, C4 = (1 + 7C2)/11.

Application of the normalization and continuity constraints then allows the linear pressure-strain model to

be written as

Hi_ --fiQ*j :-Vlpeaij+-p(k ) [(_-{-_dl) B_j((u/)_

_2 .
[1-C3-k 2d2] [aipSpj((u})+ S*p((U))apj -_Spq((U))apqSij] -

](27) [1 - C4 - 2d2l[a_papj( (u) ) - _ip( (U))apj] + -_d2Spp( (U>)aij

which follows from (21) after subtracting the pressure-dilatation from the left side and the pressure-dilatation

model from the right side of (21). All terms involving the di represent corrections due to the compressibility

of the fluctuations; the d{ vanish as the turbulent Mach number vanishes. The terms involving the Ci

come from the incompressible pressure-strain model. In which case the choice of the C{ allow one's favorite

incompressible pressure-strain model to be used. The above expression for the pressure-strain is used in

calculations presented in this paper. The calculations in this article are of standard test flows and are very

simple flows. In more complex flows realizable issues may need to be incorporated. A realizable form of the

model is given in an Appendix; more details can be found in Adumitroaie [37].

3.1.1. Commentary. It has been seen that the knowledge of one invariant of the pressure-strain,

the pressure-dilatation, and the assumption of a form linear in the Reynolds stress allows one to obtain a

model for the deviatoric components of the pressure-strain tensor. In this way an independent new theory

for the compressible pressure-strain can be avoided by using the results of developments for the scalar

pressure-dilatation. The results of previous so-called energetic approaches, Simone et al. [9], to the effects

of compressibility is built into the deviatoric portion of an expression for the pressure-strain.

This point merits consideration from another point of view. Consider, for the moment, the following partition

of the pressure-strain:

(28) psij = psi_ + pdS_ 3

For this subsection, the primes on p have been dropped. Here by s{*j we now mean the deviatoric portion

of the fluctuating strain, s}j = 0, which contains solenoidal and compressible contributions si*j = s *I + s *q93 '

*I I This is done for ease of presentation; in the nomenclature of §2 these quantitieswhere, of course, 8ij _ 8ij.

would, of course, be represented by S_ (u '_) a precision unnecessary for the present discussion. Thus one can

write

----_I --C 2
(29) psij = PSij + PS j + 5 5iJ.

10
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The term psij is closed using standard incompressible pressure-strain closures. The pressure-dilatation

is closed using models already in the literature, see §3.2 below. In §3.1 an expression for PSi_C has been
obtained.

As has already been discussed in energetic approaches, the pressure-dilatation cannot account for the suppres-

sion of the turbulence by the reduction in the shear stress as is seen in compressible flows. A straightforward

extension of the energetic approach to the second-order closure level implies

.I 2--
(30) psij = PSij + _pdSij.

Such an expression, as is consistent with [13, 18], is likewise unsuccessful in reducing the turbulence shear

stress. As will be discussed further in §5 the pressure-dilatation is a small quantity and has a nominal

effect, for a _ 1, on the turbulence stresses and energy when it is included in the spherical portion of the

pressure-straim Our procedure, using the pressure-dilatation, produces an expression for the compressible
.-C

contribution to the deviatoric portions of the pressure strain, PSij . In fact, as was born out by computational

experiments, had the expression

(31) psij-_ PSij + PSij

[without pd on the diagonal] been used in the numerical investigations reported in §5, our results would not

have changed much, for a < 1.

(33)

where

3.1.2. Pressure-dilatation models. To obtain the final form of the pressure-strain an expression for

pd is required. There are some choices. Some proposals for pd require the solution of transport equations

for the density variance [5] or pressure variance [7]. There are two pressure-dilatation models [8, 38] that do

not require separate equations. The model of Sarkar [38] is:

1H = = -3x1M2[2 (-_Mt 8_11)P(k}SPP + v_Mt X1(32) -_ pp p'd - P X2_ _s]

where X1 = 0.15, X2 = 0.2, and X3 = 0 (still to be determined by the author). Note that the model as we

have grouped the terms makes it appear as if it is singular in Mr; it is most definitely not singular. The

model of Ristorcelli [8] is

p'd = -xM2[p - -fi -g+ Tk -- 3 M2_/(_/- 1)(PT + p _ + rifT)]

2 tD( 3°'2 + 50)2)

--f(k)Mi X -Dr

= x' = g5
2 4 '

pd _%-y-- 1)'

(34)

Here a is the proportionality constant in the Kolmogorov scaling; we return to this in more detail below.

These two models, as well as a third (the Aupoix model), have been discussed in [39].

The di are determined by the pressure-dilatation model. For the Sarkar model, one requires that

(35) dl -- 8x3M2, d2- xIMt
3 2

11



App
(36) - x Mt2 

2

For the Ristorcelli model one requires that

(37) dl = xMt2, d2 -- xM2
3 2

(38) App2 -- xMt2[-fi -d+ M2V(V - 1)(PT + _ _)] -- -fi(k)M2x'D(3°D+ t 5w2)

Transport terms have been neglected; this is necessary to obtain an algebraic closure [which requires ho-

mogeneity]. The compressibility of the turbulence will only be important where the turbulence energy is

large [and thus also Mt], which is typically in regions of large production and where transport is not as

important. Which is to say that transport is only of importance in the peripheral regions of simple flows -

regions where the turbulence intensity is low, production low, and [therefore] the fluctuations are essentially

incompressible.

3.2. The mass flux and pressure-acceleration closures. The models for mass fluxes have not

undergone much development and their importance in a general flow is not fully understood. Judging from

the equations one can infer that the mass flux will be important in accelerating flows with large density

gradients. There has been some research on the mass flux: [5] solved its transport equations and Ristorcelli

[40] showed how an algebraic model for the mass flux can be obtained from its transport equation:

(39) --[ O(u ) .2O(u )O(uk)l o-p-p U_t : Tu PO(_ij -[- UlTu--K-"-- -[- U27 u (_t_U;)
oxj OXk Oxj OXp

where _-_ = MtT/[1 + _ (P/(-fi e) - 1)]. Here uo, ul and u2 are the coefficients retrieved from the inversion of

the matrix Gij = 5ij + _-__: uo = - (1 + IG + I IG) u2, Ul = (1 + IG) u2, us = (1 + IG + I IG + I I IG)- 1, the

Roman numbers representing the invariants of G. Note that the leading order term is a gradient transport

model. For an isotropic turbulence, an eddy viscosity formulation is possible. For the present set of simple

benchmark shear flows, one does not expect the mass flux terms to be very important the mean flow does

not accelerate much. We shall for the sake of simplicity use the eddy viscosity form of the mass flux -

the lowest order contribution in the polynomial given above. This is consistent with the gradient transport

model used in [11].

The baroclinic dyad, a tensor product formed from the mean density and pressure gradients, is defined as

(40) a# oF
Oxi Oxj

and the mass flux/acceleration terms in the second-moment equations can then be written, using the leading

order portion of 39, as

(41) , 1 2 2_ppSij ) 1 2 ,

. 2
where Rij = T4ij + T_ji - _T_ppSij.
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3.3. The compressible dissipation. There are several models available for the compressible dis-

sipation, [4, 5, 6, 8]. Many of these models reflect certain assumptions regarding the importance of the

compressible dissipation observed in early DNS of compressible turbulence. The compressible dissipation

has since been found to be less important than originally believed. In fact, the low turbulent Mach number

asymptotics of [8] indicate it varies inversely with the Reynolds number and as a consequence is negligible in

engineering flows, though not in low Reynolds number DNS. Compressible dissipation models are nonetheless

included for completeness.

As the Taulbee and Van Osdol [5] compressible dissipation model requires additional transport equations,

in the spirit of computational simplicity, that model will not be used. The closure proposed by Sarkar et al.

[6] is based on ideas from linear acoustics and appears related to the initial value problem, [36]. It can be

written as

(42) =

with as = 1.0 from DNS of decaying compressible turbulence; unfortunately this arrangement was deemed

to lack universality [19]. Zeman [4] provides a model on the grounds that eddy shocklets occur in high speed

flow and relating this assumption to the dilatational dissipation:

_c = 0.75(1 - exp {-[(_(1 + 7)M_ - 0.1)/0.612})es(43)

It has been shown by Blaisdell et al. [41] that Zeman's model gives incorrect scaling between es and c_.

Besides, the exponential dependence on Mt 2 delivers a steeper growth rate reduction compared to other

models.

As has been mentioned in more recent DNS studies, [9, 14, 15, 42], have demonstrated that dilatational

covariance closures with a Mt 2 scaling predict effects of compressibility when they are, in fact, very small.

In an asymptotic analysis, Ristorcelli [8] has found that the compressible dissipation has an M 4 dependence

and is inversely proportional to the turbulent Reynolds number:

= + + [3 2 +

(44) [-3zr 1 ]}

The parameters are I t ---- 0.3, I_ =- 13.768, IJ -- 2.623, I_ -- 1.392, I_ -- 3 and ar -- 0.4-4 is the

2 (k>/c 2 and RtKolmogorov scaling coefficient. Also, Mt denotes the turbulent Mach number, that is M 2 =

the turbulent Reynolds number -Rt = -fi4(k)2/(9Cs#)Re. The local speed of sound is given by c 2 = T/M 2.

For high Reynolds number flows, in the absence of wall effects, viscous diffusion is negligible.

At this point the Reynolds stress equations have been closed and it is possible to compute the flow using a

second-order closure. This is the subject of §5. However, there is a wide class of flows of engineering interest

that can be treated using simple algebraic Reynolds stress models. An algebraic closure for the Reynolds

stresses is therefore first developed.

4. A compressible algebraic Reynolds stress model. A quasi-explicit algebraic model for the

Reynolds stresses is now derived. An algebraic Reynolds stress model comes from the fixed point solution

of the evolution equations for the anisotropy tensor. These equations can be thought of as describing a

13



turbulencein astateof structuralequilibrium:thefixedpointsolutioncorrespondsto anexactsolutionof
theReynoldsstressequations.

Severalpermutationsof quasi-explicitalgebraicReynoldsstressexpressionsexist:J20,21,22,23,24,25,26,
27,28]. Thequalifier"quasi-explicit"is usedto indicatethat, asthefixedpointequationsarenonlinear,
thesolutionisgivenimplicitly.A notableexceptionis therecentexplicitalgebraicmodelof Girimaji [28]
whohasfoundtheexactnonlinear solution to the fixed point equations. The inception of our work predates

[28] and our procedure follows precedents set by [20, 21, 26]. The polynomial representation methods will

be used to obtain two-dimensional and three-dimensional versions of the algebraic turbulent stress models.

We use the ansatz introduced by Taulbee [21], to obtain the fixed point equation corresponding to the

differential equation: the Lagrangian derivative in (17),

(45) D -_bT[ ]=0,

is set to zero, which allows relaxation effects to be built into the Reynolds stress model. Equation (45) allows

a relaxation of the anisotropy to its equilibrium value at the same rate that the relative strain relaxes to

its equilibrium value, [21]. The combination of transport terms in (17) is set to zero following established

algebraic stress modeling procedures:

1 FOT{jk (u_'uy) OTk] aij [OTk OT_]
(46) (k) LO-_xk (k> 0_xkJ - _ LO_xk- T0X_J : O.

Applying these approximations results in a quasi-linear tensor expression for the anisotropy.

If bl---- s_2 1 2T_gdl, b2 ---- _ u 0, b3 = C3 - 2d2, b4 ----C4 + 2d2, and

(47) g [Cle +C_2 24(2 Cc1) P TDa 2T. 1 2M+P'd-_c] -1..... + + 2d2)Spp(<U))+ ---

the algebraic fixed point form of the Reynolds stress anisotropy equation is written

(48) a : -gT EblS* + b2R* + b3 (aS* + S*a- 2 {aS*}6) - b4(an - _ta)l

where the curly braces signify the trace. From this expression it is seen that the anisotropy tensor

(49) a{j = a{j(S*, _, R*)

is dependent on three second order tensors, two symmetric and one skew-symmetric.

4.1. A three-dimensional algebraic Reynolds stress model. Standard representation theory

methods can be applied to obtain the solution aij = aij (S*, _-_, a*) to (48). In contrast to the incompressible

case the solution of (48) is now much more difficult inasmuch as the procedure now involves an additional

tensor. Following standard methods the solution can be expressed as a finite 3-D tensor polynomial,

(50) a = E g_T_
A

comprised of a linear combination of all the independent tensor products (generators) formed from the three

primary tensors. The coefficients in the polynomial are functions of the independent invariants of the tensors.

14



For this problem the dimension of the ]minimal] tensor base is A = 41 (cf. Spencer [43]). This is very large

and is unlikely to be used in practice.

The complexity presented by such a large tensor basis can be side stepped by simplifying approximation

regarding the b3 term. It has been argued [21, 27] that for the range of values used for the constant C2 the

inequality C3 << Ca holds and thus the term multiplied by C3 will only have a small effect on the solution.

This approximation decouples the contributions of S* and R* to a. As the equation is linear the solution

is determined using the superposition principle. This one allows to split the problem into two equations of

lower tensor base dimension:

(51) a ----a S + a R

where a s stands for the solution dependent on S*,

(52) a S -- --gT [blS* - ba(aS_ - _aS)]

and a R denoting the solution dependent on R*

(53) a R ---- -gT [b2R* - b4(aR_ - _"_aR)] .

The decomposition of a into portions dependent on S* and R* is unique.

Applying the results from [21] the strain dependent portion of the solution for the anisotropy tensor can be

written

-2c._s* - 4_2_2(s*a - _s*) - s_3_3(_2s * + s*a 2 - _{s*_2}_)a S

(54) -16_4_4(_s*_ 2 - _s*_) - 32_5{s*_}(_ 2 - _{_2}_)

7 2 2 1 2 3 23 3 34 3 45
where C_ -- big(1 ÷ _how )hi, a2 --- 7blbag h2, (_3 = -_blbag hi, o_4 = -_blb4g hi, 0_5 = -_blb4g hi,

ho = b4g_, hi = h211 + 2ho_w2] -1 and h2 = [2 + ho_w2]-1.

Using a similar procedure the portion of the Reynolds stress anisotropy dependent on the baroclinic dyad is

written

a R ---- -2Ct,_-R* - 4a2T2(R*_ -- ftR*) - 80_3T3 (_'_2R * _- R*_t 2 - 2{R*_22}6)

(55) --16a4T4(nR*_] 2 -- n2R*n) - 32a5T5{R*_2}(_ 2 -- 1{_2}5 )

in which the coefficients have the same form as those in a s with the exception that bl is replaced by b2. To

obtain the full anisotropy tensor the two complex expressions (54) and (55) need to be added. In the light

of the complexity of the three-dimensional formalism a two-dimensional formalism is developed.

4.2. A two-dimensional algebraic Reynolds stress model. A simpler and tractable two-dimensional

treatment is possible. In many engineering flows the mean flow and the statistics of the turbulence are two-

dimensional. The two-dimensional problem is less complicated as the number of tensor products necessary

to express the solution is substantially reduced. The symbols S, ft, R now denote two-dimensional tensors.

It is necessary to recast the equation for the anisotropy in terms of the traceless 2-D tensors: _Si*j((u)) =

s_j((_))- ½s_((_))_) R_j(_,_) = R_j(_,_)_1 _ _ (2), _Rpp(p, p)Sij . Here, the two-dimensional Kronecker symbol
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is 5 (2) ---- [5}2)] = 1 for i = j = 1, 2 and 0 otherwise. The pressure-strain model is then written:

_ 2S*

[1 - C4 - 2d2] [aipftpy((u)) -_{p(<u>)apy]+

The fact that both 2D and 3D expressions of the pressure-strain correlation model must give the same result

when applied to two-dimensional mean flows will be used for our simplifications. Recasting the model in 2D

is done to take advantage of the simplifications that result from the 2D structure.

Inserting the closures for the pressure-strain and mean acceleration terms, (56), (57) into the Reynolds stress

equation, using the same ansatz regarding transport at a fixed point, the 2D analog of (48) is obtained:

a=-g_-[blS*+b2R_*+b3(aS*+S*a-2{aS*}5)- b4 (a_ - _a)

(58) -b5 (_ _(2))-b6 (a(_ _(2))-l{a(_ _(2))}5)]

with bl s 2= g-gdl, b2 = _-_'o, b3 = C_-2d2, b4 = C_+2d2, b5 = blS,p((U))+b2R_p(_,_), b6 = 2b3S_p((U))

and g having the same expression as in the 3-D algebraic equation. The two-dimensional polynomial solution

of (58) is, as before, also written as

(59) a = E C;_T)_"

Unlike the three-dimensional solution, however, the generators now consist of only five tensor groups:

5 5 (2)

(60) T °- T I=s*, T 2=S*12-12s*, T 3=R*, T 4=R*_-fIR*
3 2 ' -

for which there are five non-zero independent invariants,

(61) a2={S'2}, w2=-{122}, {R*2}, {R*_S*}, {S*R*I_}.

The fact that there are no other independent tensor generators [or invariants] can be verified using the 2 × 2

matrix identity:

2abc ---- bc{a} + a{bc} + ac{b} - b{ac} + ab{c} + c{ab} -

(62) c{a}{b} - a{b}{c} + ({ac}{b} - {acb})5 (2).
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To obtain the solution to the algebraic equations for the anisotropy tensor, (58), a procedure similar to the

one devised by [20] is used. Three 5 × 5 matrices T/_, J_, Z_, are defined:

(63)

A

T'_* - _*T' = E J: TA
A

(66)

(67)

The Qi coefficients are given by

(68)

(69)

(70)

for which A = 0 - 4. The elements of the matrices are determined from the above equations by making use

of matrix relations stemming from the Cayley-Hamilton theorem. The 2-D tensor polynomial a = _-_-ACATA

is introduced in both sides of relation (58). By making use of the above matrix identities the coefficients of

the tensor polynomials are found to satisfy the following system of equations:

[(64) C A = --gT bl_lA -_- b253A -_-b3 E C_7-L_ - b4 E C_J_ - b550A - b6 E C_:_r_

The solution of this system of equations determines the model coefficients in the following algebraic expression

for the anisotropy tensor

a:-2Ct_T [Q2S* + (Qt + Q3)b3gf2T_2 (2 5-5(2)) + Q2b4gfl_-(S*f_-l_t S*)l

(65) -2C;_- [R* + b49f1_'(R*l'_ - fl R*)]

suitable for two-dimensional mean flows. The eddy viscosities, C. and C_, are given by:

big f1�2

c. = 1 -  (b3g )2 2f f +  (bigf  )2 2

b2gfl/2

c'. = 1 +

b2 {S *} + 2gflTb4 _2 JQI=I+v 

2 (bagT)2a2flf2 b3b5

Q2 = 1 + 3 1 + 2(bagflT)2w 2 (Q1 -- 1) -- _-l gf2T

b5 I-I- 2(b4gf17)2w 2
Q3-

bib3 2gflTcr 2

(71)

with fl = (1 + b6gT/6) -1 and f2 = (1 - b6gr/6) -_. Note that the direct effect of compressibility as reflected

in the baroclinic dyad occurs in Q1 and Q2.

The high order of nonlinearity of the algebraic equations does not permit, in general, the construction of a

fully explicit solution. Instead, an iterative approach is employed during the computations to generate the

correct values. The algebraic solution is linearized by lagging the turbulence production term which contains

the nonlinearity.
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4.3. Discussion. To conclude this section some general statements regarding the behavior of the al-

gebraic closure derived for the Reynolds stresses are highlighted. In §3 a closure for the Reynolds stress

equations was obtained. In the present section the fixed point solution of the modeled second moment

equations, under the condition of structural equilibrium, was obtained. For two-dimensional mean flows the

compressible algebraic stress model can be symbolically written as

(72) a= --yto s_- Vtl [S:_'_-- _'_ S*]-- Vt2[_(_-- (_(2)] - Vic0R* -- V_l[a*_- f_ R*].

Note that products of the mean strain and the baroclinic dyad do not appear. This is due, for two-dimensional

flows, to the relation T__S*-b_S*T" - 2 {TV_S,}5 _- _2{T__S,}T0; the generator comprised of the mean strain

and baroclinic dyad product is redundant. Examining the above expression, the following observations can

be made:

I. The first two terms are the same terms obtained in algebraic stress closure for two-dimensional [in

the mean] incompressible flows.

2. The first two eddy coefficients are functions of the relative strain and the relative rotation as is the

case in incompressible flows. They are now also functions of the turbulent Mach number and the

gradient Mach number.

3. Neither of these eddy coefficients depend on baroclinic effects.

4. It is seen that in the absence of mean velocity gradients that the turbulence is anisotropic due to the

mean baroclinic dyad. This anisotropy manifests itself in the deviatoric as well as diagonal terms.

It is useful to construct a simple example to see how the new effects influence the anisotropy. Consider a

simple shear flow with a streamwise acceleration: let the Favr@ mean velocity, the mean density and the

mean pressure gradients be represented by UI,2, UI,1, Vfi ----fi,2, and VP ----P,I.

2 1 1

(73) all _--- _//to U1,1 -_- _/]tl U2-- 1,2 -_- 3 /]t2 "_- /2_1 U1,2 /9,2 P,1

1 1 U2 1 /]c
(74) 622 = _//to UI,1 - _/]tl 1,2 _- _/]t2 - tl U1,2 /_,2 P,1

1 2

(75) 633 _-_ _/]tO U1,1 -- _/]t2

1 1

(76) a12 = -- _ /]to U1,2 - _/]tl U1,2 UI,1 -/]_0 fi,2 P,l

Several observations regarding the above algebraic expression for the anisotropy can be made:

1. The expression is the first [that we know of] rigorous indication of the direct role the baroclinic dyad

plays in determining the Reynolds stresses.

2. The expression indicates that, for arbitrary mean deformation, the mean baroclinic dyad contributes

to the deviatoric portions of the Reynolds stress.

3. The expression also indicates that the baroclinic dyad also changes the relative magnitude of the

normal stresses. This effect only occurs for mean deformations that are rotational. For an irrotational

mean deformation the baroclinic dyad makes no contributions to the normal stresses.

4. For a uniform mean velocity the baroclinic dyad is a source of anisotropy but only in the deviatoric

portions of the anisotropy.

5. The expression indicates the inapplicability of any heuristic gradient transfer arguments for the

Reynolds stresses in flows with important gradients of mean density and pressure.
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Whiletheseresultsindicatethe inapplicabilityof anyform of eddyviscositymodelfor the stressesin
compressibleflowswitharbitrarylargedensityandpressuregradientssomequalificationsarein order.The
presenceof thebaroclinicdyadis likelyto beimportantonlyin rapidlyacceleratingaerodynamicflowsor
incombustingflowswhereonecanexpectthemassfluxesto beimportant.In theabsenceoftheseeffectsit
appearsthat theparameterizationoftheReynoldsstressesin termsofpowersofthemeandeformationwith
modificationsaccordingto thecompressibilityofthefluctuationsasthoseindicatedin §3isappropriate.

5. Computational investigations of free shear flows. The theory and results presented in the

previous sections are now implemented over a very wide range of mean flow Mach numbers in the simulation

of free shear flows. Simulations using second-order moment (SOM) closures as well as the quasi-explicit

algebraic models are conducted. The numerical experiments are constructed with the intention of investi-

gating several different issues of relevance to the prediction of compressible turbulent flows for engineering

purposes.

In addition to assessing the sensitivity of the pressure-strain model to the different pressure-dilatation models

we compare the computational results to what is expected from laboratory and numerical experiments. Of

particular interest is the well known effect of compressibility on reduction of the spread rate of the mixing

layer. The main objective is to assess the effectiveness of the compressibility corrections in reproducing

the reduced growth rate of the free-shear layers with increasing Mach number - a phenomenon which is

well documented experimentally [44]. We also study the adequacy of the algebraic stress closure with the

results of the SOM simulations. In particular the Reynolds stresses and the anisotropy computed using both

of these procedures are compared to solutions without the compressible corrections in order to assess the

effects of the new pressure-strain closure on the anisotropy. Our intention is to further investigate the notion

that the dramatic reduction of the mixing layer growth rate is due to the effects of compressibility on the

pressure-strain and, consequently, its effect on the reduction of the turbulence shear stress.

5.1. Numerical method. The simulations are conducted using a finite difference scheme, following

[45], second-order accurate in time and fourth-order accurate in space. The governing equations are integrated

explicitly in time using the predictor-corrector finite difference scheme developed by Gottlieb and Turkel [46].

The Gottlieb-_rkel scheme is a higher order accurate variant of the MacCormack [47] predictor-corrector

method. During a numerical sweep, the inviscid fluxes are alternatively differenced backward in the predictor

step and forward in the corrector step. Fourth-order central differences are used for the viscous and heat flux

terms as well as for the derivatives in the source vector. To maintain stability, it is required that the CFL

number be less than 2/3. To prevent numerical oscillations in regions of large gradients a smoothing scheme

devised by MacCormack and Baldwin [48] is employed. The method, as outlined in [45], adds artificial

viscosity that is very small everywhere except in the regions where the pressure oscillates.

All simulations are conducted on a uniformly spaced grid in the computational domain. By means of

a coordinate transformation the mesh is transversally compressed in the physical domain in the region

corresponding to the mixing layer.

The physical domain is a rectangular box defined by the set of points (x, y), in which x represents the

streamwise coordinate and y the transversal coordinate. The grid overlaying the computational domain of

size xS,, x yS,_ has 100 x 60 points, where the vorticity thickness 5_ = (uz - u2)/(O(u}/Oy) .... the brackets

0 denoting the averaged value. In this nondimensionalization, the reference length scale is the magnitude
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of thevorticitythicknessat the inlet. Theinitial profilefor themeanaxialvelocityisadjustedsuchthat
theresultingnondimensionalvorticity thicknessat the inletis equalto one. Thevaluesof thephysical
dimensionsare(x,y) ---- [80, 20] for the mixing layer. To evaluate the grid sensitivity the number of grid

points is increased by a factor of 1.5. The change in the steady-state values of the peak of the turbulent

stresses is less than 2 percent.

To accelerate convergence to the stationary state, a local time stepping technique is used. The convergence

criterion is imposed so that the global averaged residual profile attained is stationary for each dependent

variable. Although more stringent criteria can be sought, it is known, [49], that predictor-eorrector schemes

are limited in their ability to achieve very high rates of residual reduction.

Due to the nonlinearity of the destruction terms, the k - c equations display a stiffness which can either

generate numerical instabilities or increase the computational time. In order to avoid these inconveniences

the turbulence source terms are treated implicitly. The k - _ destruction terms are decoupled by suitable

manipulation of the elk ratio, considered as a known quantity from the previous time step.

Initial and boundary conditions. The initial fields are obtained by propagating the inflow conditions

throughout the entire domain; hence, the flow has to sweep the domain at least one time to obtain meaningful

results. For ease of computation, the inflow initial conditions (IC) for the flow variables are assumed to be a

smoothed step (hyperbolic tangents for the axial velocity or species) or a smoothed hat profile (for turbulence

quantities). Uniform profiles are assigned at the inlet to the static pressure, to the static temperature and,

by virtue of the equation of state, to the static density.

The boundary conditions (BC) are set according to the elliptic nature of the problem on all four boundaries.

The inflow BC are fixed (Dirichlet) for all primary variables in the supersonic and subsonic regions with one

exception. For the portions where the flow is subsonic the pressure is allowed to adjust to the characteristic

waves through a Neumann boundary condition. At the outflow and outer boundaries zero gradient (Neu-

mann) conditions are applied due to their non-reflective properties in relation with the outgoing waves. In

the mixing layer, the static pressure, temperature and density in the two free stream layers are matched.

This isolates the contributions to the layer growth to those due solely to the variation of the reference Much

number.

Free-shear flow parameters. The magnitude of the effects of compressibility are often parameterized by

the convective Much number [50]. In our formulation the expression for the convective Much number is

Mc = M(1 - rv)/2, where rv ----u2/ul is the axial velocity (u) ratio. A wide range of values of Mc including

both subsonic and supersonic regimes are considered: 0.2 < M_ < 2.0. The convective Much number is

varied by keeping the velocity ratio constant and varying the reference Much number M. The reference

Reynolds number is Re ----5 x 106, while all the other nondimensional parameters are kept constant as well.

The subscript 1 refers to the high-speed stream value, while the subscript 2 refers to the low-speed stream

value in the mixing layer. No jet simulations are shown in this article; they can be found in [37].

In the results presented, the spatial coordinate, for the hydrodynamic variables, are given by y. In the

mixing layer, _ = y-y(_=o.5) where fi = _ Unless otherwise specified, the results shown are from
X ' Ul--_2 "

computations [ARSM and SOM] with models based on the dilatational models of [8].

After an initial period of flow development a linear growth rate of the shear layers is attained. In the fully
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developed regime, when a linear growth rate has been established, the mean velocity and the normalized

Reynolds stresses display self-similar behavior. The spread rate of a turbulent shear layer, in the self-similar

region, is conventionally expressed as dhu/dx = C_(1 -rv)/(1 + rv) where 5u could be either the 10 percent

visual thickness of the shear layer based on the normalized velocity profile or the vorticity thickness, and

C5 is a constant (approximately). As the present article is concerned with compressible corrections to the

turbulence moment equations no plots of the mean flow quantities are given; the mean field variables are

quite typical and can be seen in the literature, [11, 51, 52].

5.2. Mixing layer simulations. The primary concerns of this article are with 1) a representation of

the effects of compressibility as they appear in the pressure-strain covariance and 2) the construction of an

algebraic Reynolds stress model useful for engineering calculations. Studies related to both these issues, for

the Mc -- 1.07 mixing layer configuration, are shown in the first two figures. The Reynolds stresses and

the production/dissipation ratio obtained for ARSM and SOM calculations are shown in Figures 1 and 2.

Also shown, as a double check, are curves based on an a priori evaluation of the algebraic stress model;

the data from a SOM calculation is used as input to the ARSM. The neglect of turbulent transport in the

algebraic stress model is reflected in differences in the normal stresses at the centerline. In general the a

priori evaluated ARSM curves follow closely the computed ARSM values indicating that for this flow the

neglect of transport in the moment transport equations is justified. The algebraic approximation is, as has

been verified at several different convective Mach numbers, suitable for an investigation of trends in this flow

configuration.

Also shown in Figures 1 and 2 is the SOM computation without compressibility corrections [NC - no com-

pressibility]. The effect of the compressibility corrections manifest themselves as decreases in the centerline

values of (uu), (uv) and (vv) of approximately 16%, 25% and 24% respectively. This is consistent with that

seen in DNS. In addition, the streamwise normal stress suffers a smaller reduction than the other Reynolds

stresses. This, as will be seen, will manifest itself in an increase in the streamwise normal anisotropy.

The production/dissipation ratio is shown in the bottom of Figure 2. The average level of P/c for the

compressible case is smaller than the incompressible case; this is consistent with the reduced turbulent

kinetic energy of the compressible flow. While the overall level of the production is smaller it is interesting

to note that at one location in the mixing layer, the centerline, P/c is nominally higher. It has been

conjectured that this might be due to the higher relative strain rates compressible flows may be able to

sustain. This is an issue that further DNS may resolve.

Figure 3 displays the vorticity thickness. Vorticity thickness spread rates as predicted by the SOM simula-

tions, with and without (NC) the compressibility correction, are shown on the top of Figure 3. It is seen,

that even with such modest contributions from compressibility, scaling as they do with Mt 2, a sizable change

in growth rate is seen. The variation of Mt with Mc is shown in Figure 5.

Figure 3 also displays the different components of the pressure-strain tensor computed from the SOM simula-

tion with and without (NC) the compressibility correction. The different components of the pressure-strain

are all reduced by about the same amount. This is precisely the behavior seen, in both direction and

magnitude, in the recent DNS [15] - see Figure 4.18.

Reynolds stress anisotropy. In Figure 4 the computed values of the centerline Reynolds stress anisotropies

are shown. At low values of compressibility the anisotropy has values similar to that of simple incompressible
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shears. At higher levels the anisotropy behaves very much like the compressible shear DNS; more of the

energy of the turbulence is in the streamwise component as made clear by the increase in an. This is at the

expense of the crosstream component, (vv), which is reduced. This is, as shall be discussed further, due to

the reduction of intercomponent energy transfer due to the compressible aspect of the pressure-strain. There

is also a reduction in the shear stress as is seen in compressible DNS.

Comparisons with laboratory Reynolds stresses. The effects of the new compressible models on the

anisotropy is shown in Figure 4. Unfortunately, in the laboratory situation, the spanwise Reynolds stresses

are rarely measured. As a consequence the anisotropy is not known and one returns to primitive variables.

The maximum values of diverse Reynolds stresses in the mixing layer are plotted as function of the convective

Mach number in Figure 4. In this figure a_ and av represent, respectively, the <uu) and (vv) Reynolds stresses

nondimensionalized by the square of the velocity difference across the layer. Also shown are the experimental

results of Elliot and Samimy [53]. Underlying this comparison is, of course, the implicit assumption of

self-similarity. The maximum Reynolds stresses decrease with compressibility. In the present simulations,

however, the peak values of the turbulence intensities (axial and transverse) do not vary as strongly as in

the laboratory findings of Goebel and Dutton [54]. In fact the present simulations are closer to the results

of either [54] or [53] than either [54] or [53] are to each other.

There appears to be a discrepancy. A survey of the diverse compressible DNS indicates that all increases with

compressibility. This implies that (uu) decreases faster than (vv). [Figure 9 of [14] is the most comprehensive

presentation of this trend.] This does not appear to be the case in the laboratory experiments. In the mixing

layer of [53] (uu) decreases more rapidly than <vv> for all Mc implying that all decreases with increasing

compressibility contrary to DNS results. In [54] (uu) decreases more rapidly than <vv> for low Me; while

at moderate M_, (uu) decrease less rapidly than (vv> in accord with DNS results. No explanation for this

discrepancy between laboratory and numerical data is known.

The pressure-strain tensor. The effects of compressibility on the Reynolds stresses are believed to be the

source of the dramatic influence on the spread rate as the convective Mach number increases. The physical

mechanisms responsible for these phenomena were once believed to be the compressible dissipation and

pressure-dilatation which caused a decrease in the Reynolds stresses due to an overall decrease in k. This

was accompanied by no substantial changes in the anisotropy. As discussed in §1, recent simulations suggest

that compressibility causes a turbulent shear stress reduction due to a reduction in its associated anisotropy.

This is a statement that compressibility manifests itself structurally, not energetically. The reduction in the

anisotropy leads, of course, to a reduction in k and ultimately in the mixing layer growth rate.

More recent simulations, [9, 14, 15, 16] all seem to indicate that the major changes in the shear stress are

due to the effect of compressibility on the pressure-strain covariance. Figure 6 is an illustration of this idea:

Figure 6 depicts the different components of pressure-strain tensor and its trace [the pressure dilatation] at

the centerline of the mixing layer. Figure 6 is patterned after Vreman et al. 's [14] Figures 3 and 9. The

behavior of all the components of the pressure-strain, shown in Figure 6, are very much in accord with the

figures of [14]. The only notable difference is the relative levels of 1122 and ri33. The trends are very much

the same and the relative behavior - a commensurate across the board reduction with M_ - is very much in

accord with [15].
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The behavior of the pressure-strain illustrated in Figure 6 is very much in keeping with the current under-

standing of the mechanism for the reduction of the turbulence energy by the reduction of the shear stress:

the only source for the kinetic energy is in the (uu) component and its production is proportional to (uv).

The reduction [in magnitude] of Hll and 1-I22 means that less energy generated in the (uu) equation is

transferred to (vv) [by II22]. As (vv I has no production (vv) is much smaller. As consequence of the fact

that the production of (uv) is proportional (vv) much less (uv) is produced and much less (uu) is produced.

This can be seen by the considering the truncated forms of the second-order moment equations:

D

(77) Dt (uu) _ - (uv)U1,2 + Hll + ....

(78) D (vv) 1122 ÷
Dt

(79) 19 (uv) _ - (vv)U1,2 + I]12 -b ....
Dt

The thesis of [15] provides a schematic of the above process. The behavior of the Reynolds stresses and

the pressure-strain indicated by Figures 2 and 6 is consistent with the mechanism for the reduction just

delineated. Specifically, the fact that less of the (uu) energy is transferred to the other components of the

Reynolds stress means that the anisotropy, all -- 2bin, must increase as seen in all the DNS. Note also

that the pressure-dilatation as derived by the asymptotic procedure in [8] is extremely small; negligible

in comparison to the pressure-strain. Yet its use to obtain the deviatoric portions of the pressure-strain

produces a very sizable reduction in the shear stress and the growth rate.

Gradient Mach number. Sarkar [16] and earlier work cited therein have drawn attention to the gradient

Mach number as a potentially useful parameterization of the effects of compressibility. Many of the effects of

compressibility, as indicated by diverse DNS, have been observed to become more apparent as the gradient

Mach number increases. Shown in the bottom of Figure 5 is the gradient Mach number using the definition

Mg = 2Mt_(k)/es. The definition of the gradient Mach reflects the fact that the Kolmogorov scaling,

e _ (k)3/2/_ has been used to eliminate the length scale in the definition Mg ----ag/c. In DNS, the length

scale g is determined from the two-point correlation; no such opportunity occurs in single-point closures.

Both the DNS, for example Figure 4.29 in [15], and the SOM simulation indicate a similar decrease in rate

of increase of Ma with Me. The decrease seems to occur at lower Mc in the DNS. This is likely to be related

to the different length scales used.

One of the noteworthy observations made of the effects of compressibility is their tendency to saturate, [11].

In the bottom of Figure 5 the rate of increase of the maximum turbulent Mach decreases at higher convective

Mach numbers. This is line with observations of [11].

Kolmogorov scaling. While in DNS a length can be determined from the two-point correlation, no such

possibility exists for single-point closures. Yet a length scale, reflecting the two-point nature of the turbulence

problem, is required. The length scale appearing in the Kolmogorov inertial range scaling, e _ (k)3/2/_, was

used in [8].

There is a proportionality coefficient, a, in the Kolmogorov scaling a = _s_/(2k/3) 3/2. For infinite Reynolds

number isotropic turbulence a _ 1. For finite but large Reynolds number anisotropic turbulence undergoing

deformation the Kolmogorov scaling is likely to be useful but a is likely to be a flow dependent quantity.

Sreenivasan [55] has made some studies of the variation of the Kolmogorov scaling coefficient: [55] has found
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values of a ranging between 0.4 - 2 for diverse incompressible simple shear flows. To allow for the expected

variability of a two different values of are used in many of the simulations. The value of a does not change

any of the trends and does not seem to have too strong an effect on the energy at the centerline as seen in

Figures 4 and 5. It does however effect the mixing layer spread rate as can be seen in Figure 8.

Mixing layer growth rates. Settles and Dodson [44] have compiled a very large number of experimental

results. These are shown in Figures 7 and 8. The experimental curves come from the experiments of

[50, 54, 56, 57, 58, 59, 60, 61]. The scatter in the data reflects the fact that different experiments are done in

different wind tunnels, with different inlet configurations and with different reservoirs. The computational

curves shown in Figures 7 and 8 reflect two different but complementary investigations. As the "Langley

curve" [62] has been a popular benchmark it has also been included. The well known reduction in the mixing

rate with increasing Mc is seen in all the data.

Figure 7 reflects computations using the "energetic" approaches. A k - _ scheme has been used to calculate

the mixing layer growth and the only compressible corrections are in the k equation; the Reynolds stresses are

closed with the usual incompressible eddy viscosity [Boussinesq] approximation. The compressible dissipation

and pressure-dilatation models of Zeman [4], Sarkar et al. [6, 38], Ristorcelli [8] are used in the k- c scheme.

Figure 7 indicates that the results based on the models of Zeman [4], and Sarkar et al. [6, 38] capture

the mixing layer reduction. The reduction of the mixing layer growth rate has been captured by similar

mechanisms in both models; most of the suppression is provided by a substantial amount of additional

dissipation that comes from the compressible dissipation models. As was pointed out in §I, the compressible

dissipation, as has been indicated by DNS and by asymptotic analysis, is not important in these flows. Any

arbitrarily dissipative term added to the k equation, appropriately calibrated and scaled, would produce such

agreement for the mixing layer growth. Moreover, as with all energetic approaches, there is no possibility of

accounting for the very important structural changes that appear in the anisotropy.

As indicated by Figure 7 the pressure-dilatation model of [8], with _ -- 2, accounts for a nominal suppression

of the growth rate. The compressible dissipation being negligible in analysis of [8] is not included in this

calculation. From incompressible DNS, [63] it can be argued that a value of a _ 1 might be more appropriate.

As the pressure dilatation scales with c_2 a value of (_ _ 1 would decrease the pressure-dilatation effects by

a factor of four.

Figure 8 reflects a computation using the compressible algebraic Reynolds stress model. This is exactly the

same computation as given in the Figure 7 with the exception that the algebraic Reynolds stress approxi-

mation now includes the effects of compressibility in the pressure-strain covariance representation used to

close the second-moment equations. Note the substantial changes on the layer growth rate prediction that

include the effects of compressibility on the Reynolds stresses produces. The change is more drastic for the

Ristorcelli modeling than the Sarkar modeling; this is to be expected as the majority of the growth rate

reduction using the earlier Sarkar modeling was built into a dissipative term and the relative change is small.

The algebraic model built upon dilatational closures of [8] shows improvement over the results from a simple

k - _ scheme. Figure 8 depicts the outcomes of the computations with the Ristorcelli [8] based algebraic

closures for two values of the Kolmogorov scaling coefficient. The results for _ =- 0.4 with both the pressure-

strain and pressure-dilatation provide a modest decrease in the spread rate; handily matching that predicted

with simply the pressure-dilatation with (_ -- 2. The ARSM calculation is substantially changed when _ ----2;
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if c_ were an undefined constant one might be tempted to set it so as to match the reduction in spread rate

indicated by the data. Given that little is known about a ]though it is sure to be in the range 0.4-2.0 and

most likely a _ 1] these issues must be left to future DNS work.

It is concluded that the present pressure-strain modeling method based on the extension of the well-

established incompressible procedure, in which the trace-free constraint is relaxed, does rationally account

for a significant portion of the reduction in shear stress and growth rate. This procedure is considered a

leading order contribution to the compressible turbulence shear stress problem. The possibility that addi-

tional compressible corrections to the pressure-strain, addressing physics not able to be accounted for using

this constitutive relation methodology_ may require consideration.

6. Some issues in compressible turbulence modeling. In our effort to obtain a closure for the

effects of compressibility a few issues, already alluded to, have become clearer. These issues are now high-

lighted.

The baroclinic dyad. The procedure invoked to obtain the algebraic Reynolds model indicates that the

baroclinic dyad is a source of turbulence. This, of course, can be anticipated by inspection of the second-

order moment equations. The consequence is that an eddy viscosity representation for the Reynolds stresses

is, from first principles, inappropriate for classes of flows in which the mass fluxes are important.

The presence of the baroclinic dyad is likely to be important only in rapidly accelerating aerodynamic flows

such as through shocks or in hypersonic situations. The baroclinic dyad is also likely to be important in

combusting flows where one can expect the mass fluxes to be important. In noncombusting supersonic flows it

appears that a parameterization of the Reynolds stresses in terms of the mean deformation with modifications

according to the compressibility of the fluctuations as those derived in §3.1 appears appropriate.

A length scale for single-point models of compressible turbulence. Much of the work described here

is based on the leading order asymptotic analysis of ]8]. In [8] the effects of the non-zero divergence of

compressible turbulence was parameterized by several two-point integrals made nondimensional by a length

scale. For single-point turbulence closures the length scale is typically determined by the Kolmogorov inertial

range scaling, e _ k3/2/_.

For compressible turbulence of interest to supersonic aerodynamic flows the cascade mechanism will be

comprised of the usual nonlinear solenoidal modal interactions. The Kolmogorov scaling is expected to

be valid in the weakly compressible limit. However, given the notable behavior seen in simulations with

increasing compressibility of a length scale, see Figure 4.28 of the recent [15], one might expect the coefficient

of proportionality, what we have called c_, to be a function of compressibility. That this might be the case

is also suggested by different instability modes that appear in the compressible flows. Studies similar to the

incompressible studies shown in [63] appear to be both interesting and very relevant to issues of compressible

turbulence modeling.

Experimental differences in numerical and laboratory data. There appears to be a unanimous agreement

in the DNS that, with increasing gradient or convective Mach number, all increases while a22 and a12 both

decrease. This trend does not appear in the laboratory mixing layer experiments. At low Me, (uu I appears

to decrease more rapidly, with increasing compressibility, than (vv). This implies that all decreases with
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compressibility in contradistinction to DNS results. It is crucial to understand the cause for the differences

between the DNS and the laboratory flows of the (uu I Reynolds stress behavior; turbulence models are

based on intuition gleaned from DNS data but are used to predict engineering flows that are more similar

to laboratory flows. The present computational results are closer to either of the laboratory experiments of

[53] or [54] than the laboratory experiments of [53] or [54] are to each other. Earnest speculation on the

source of the differences in the two experiments and facilities is required.

7. Summary and conclusions. Progress towards the development of a compressible turbulence clo-

sure, starting at the level of second-order moment equations, has been described. Modeling from the second-

order level accommodates important structural changes that appear in the anisotropy and are a feature and

a function of compressibility. In the second-order moment equations the compressible contributions to the

pressure-strain covariance have been obtained. The pressure-strain has been closed by assuming that, as

is consistent with the weakly compressible limit, it can be modeled as a tensor polynomial linear in the

Reynolds stresses. The difference from the incompressible case is that the trace of the compressible strain is

not zero; it is set equal to the pressure-dilatation for which models exist. The compressible pressure-strain

closure features a dependence on several turbulence descriptors: the turbulent Mach number, the relative

strain, the gradient Mach number, the production and the dissipation. As a consequence the coefficients in

the compressible pressure-strain closure are not constants but functions of the compressible parameters.

In addition to devising a closure for the pressure-strain, a closure for the mean acceleration/mass flux terms

appearing in the Reynolds stress equations has also been developed. For the flows studied in this article,

which are limited to the flows for which relevant experimental data are available, the acceleration/mass flux

moments are not important. The mass flux terms will be important in the combusting or hypersonic flows

which motivated the thesis [37], of which this article treats one aspect.

Having closed the compressible Reynolds stress equations standard tensor representation procedures have

been used to produce a compressible algebraic Reynolds stress model useful for flows near a structural

equilibrium. A noteworthy item of this portion of the work is that the role that the mean pressure and

mean density gradients plays on the Reynolds stresses is immediately seen. As a consequence, it is seen

that the baroclinic dyad can, in the absence of mean velocity gradients, contribute to the anisotropy of the

turbulence. It is also seen that the mean bulk dilatation contributes to the anisotropy in a way that is quite

different from an irrotational strain.

The mathematical results developed here have been implemented in mixing layer computations spanning a

wide range of mean flow Mach numbers. In this article the discussion has been limited to the compressible

mixing layer for which a sizable amount of literature exists. The calculations presented have been organized

along two themes: 1) an investigation of the effects of compressibility as related to the compressible pressure-

strain and the Reynolds stresses and 2) a validation of the algebraic Reynolds stress model predictions.

The computations with the compressible pressure-strain indicate that the present modeling [which does not

have undefined tunable constants] produces precisely the behavior seen in the DNS of [14] and [15]; there is a

commensurate reduction, with increasing convective Mach number, of all the components of the compressible

pressure-strain tensor. The changes in the pressure-strain lead, as is established by DNS of several different

flows [14, 15, 16], to changes in the anisotropy of the Reynolds stresses. The changes predicted by the

modeling for the normal and shear anisotropies are very consistent, in trend, with DNS data and especially
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with theDNSof themixinglayerof [14]1 theflowconfigurationmostsimilarto theonetreatedin this
article.ComparisonsbetweenthecomputationalpredictionsandlaboratoryresutlsfortheReynoldsstress
andtheir behaviorwith increasingcompressibilityis poor. This is dueto unknownexperimentalissues:
theagreementbetweeneventhedifferentlaboratoryexperimentsispoorerthantheagreementbetweenthe
numericalandexperimentalresults.

All the laboratorydatadohoweveragreeon the trendof the mixinglayergrowthratewith increasing
compressibility:it decreases.Thecomputationalexperimentsconductedindicatethat sizablereductionsin
themixinglayergrowthrateaccompanychangesin theanisotropyoftheturbulencedueto thecompressible
aspectsof thepressure-straincovariance.
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Appendix A. The Poisson equation for the fluctuating pressure is obtained by taking the divergence

of the Navier-Stokes equations. Both instantaneous and averaged forms of these equations are necessary in

the derivation. The subtraction of the mean equations from the instantaneous equations and simple term

manipulations involving the continuity relation provide the desired Poisson equation [5]:

02p t 02fl t 02
__ II -- /_ _ull -- l/ l/

(80) | _|

30x_ [Re Oxk J

The solution for the fluctuating pressure can be determined by using Green's functions or Fourier transforms.

With respect to the incompressible counterpart, the compressible Poisson equation is severely complicated.

An equivalent form which resembles more to the incompressible equation can be obtained as:

02P I 02 fl I 02 02 t! I! 02

- or2 0x + [pu uj - - +

(81) 4 o2 [__.O<l
3 Ox 2 LRe OxkJ

The last term on the right hand side (RHS) converts, when the fluctuating pressure solution is used to deter-

mine the pressure-strain correlation, into a viscous interaction tensor whose trace is equal to the dilatational

dissipation. In the absence of walls this term can be omitted in high Reynolds number flows. The acoustic

term (the first term on the RHS) is difficult to be taken into account in the present analysis. If it is assumed

that the pressure fluctuations are caused by turbulence only then this term is negligible. The condition

pP/-p << 1 allows the neglect of the second term on the RHS. The remaining terms are the return-to-isotropy

and the rapid part for which known modeling principles can be applied in the limit of low convective Mach

numbers.

Appendix B. It well known that for linear pressure strain forms it is impossible to satisfy realizability

conditions the requirement that the eigenvalues of the Reynolds stress tensor remain positive. Satisfying

realizability is a very practical computationally stabilizing requirement. Our experience with computations

in complex flows indicates that realizability is very useful. The model is now made (weakly) realizable

following methods suggested by Schumann [64] and Lumley [34] and detailed by Shih and Shabbir [65]. Let

F = 1 + 27III/8 + 9II/4 is a parameter involving the second invariant II = _ _1aidadi and third invariant

III= -½aijajkaki of the Reynolds stress anisotropy tensor. Then the following asymptotic behavior for the

pressure strain-model ensures that realizability is satisfied:

2

Ae_ - -_p e = CF'* as F --+ 0

(82) O<Up>Zp¢q_--+ 0 as F -+ 0
OXq

where the index e indicates that the relations are written in the principal axes of " "{u i uj >. The computa-

tional form of the model with the additional parameters necessary to enforce realizability so necessary for

computational stability is

IIib -- _ _i5 : -Clp-#aijArFC_ q--p<]g> [(_-}-_dl)_(<u>)q--
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2 ,[1 - C3 + 2d2] aipSpj( (u> ) + S*p( (U) )apj - -_Spq( (U) )apq6ij -

4 ](83) [1 - Ca - 2d2][aipf_pi( (u) ) - f_ip( (U) )apy] + gd2Spp( (U) )aij BrF f_

with C3 -- (5 - 9Cu)/11 and C4 = (1 + 7C2)/11. The value for the constant C2 will be the same as in

the incompressible model to preserve consistency in the zero Mach number limit, that is C2 ---- 0.45. The

parameters are (_r ----0.1, f_r = 0.5, Ar = min(F -a', 0.1 -a_) and Br ----min(F -_, 0.1-_).

4 _ +Using this modified form of the pressure-strain model the ARSM coefficients become: bl =

2dl), b2 = _1 27_0 ' b3 = 1 - BrFZ'(1 - C3 + 2d2), b4 = 1 - BrF_(1 - Ca - 2d2), and

[ P
__ -1

(84) 2Z( 1 _ 2d2BrF_)Spp((U) ) + 2M + p'd_- p e_]3 P _s "
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